TY - GEN
T1 - UMERegRobust-Universal Manifold Embedding Compatible Features for Robust Point Cloud Registration
AU - Haitman, Yuval
AU - Efraim, Amit
AU - Francos, Joseph M.
N1 - Publisher Copyright:
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.
PY - 2025/1/1
Y1 - 2025/1/1
N2 - In this paper, we adopt the Universal Manifold Embedding (UME) framework for the estimation of rigid transformations and extend it, so that it can accommodate scenarios involving partial overlap and differently sampled point clouds. UME is a methodology designed for mapping observations of the same object, related by rigid transformations, into a single low-dimensional linear subspace. This process yields a transformation-invariant representation of the observations, with its matrix form representation being covariant (i.e. equivariant) with the transformation. We extend the UME framework by introducing a UMEcompatible feature extraction method augmented with a unique UME contrastive loss and a sampling equalizer. These components are integrated into a comprehensive and robust registration pipeline, named UMERegRobust. We propose the RotKITTI registration benchmark, specifically tailored to evaluate registration methods for scenarios involving large rotations. UMERegRobust achieves better than state-of-the-art performance on the KITTI benchmark, especially when strict precision of (1◦, 10 cm) is considered (with an average gain of +9%), and notably outperform SOTA methods on the RotKITTI benchmark (with +45% gain compared the most recent SOTA method). Our code is available at https://github.com/yuvalH9/UMERegRobust.
AB - In this paper, we adopt the Universal Manifold Embedding (UME) framework for the estimation of rigid transformations and extend it, so that it can accommodate scenarios involving partial overlap and differently sampled point clouds. UME is a methodology designed for mapping observations of the same object, related by rigid transformations, into a single low-dimensional linear subspace. This process yields a transformation-invariant representation of the observations, with its matrix form representation being covariant (i.e. equivariant) with the transformation. We extend the UME framework by introducing a UMEcompatible feature extraction method augmented with a unique UME contrastive loss and a sampling equalizer. These components are integrated into a comprehensive and robust registration pipeline, named UMERegRobust. We propose the RotKITTI registration benchmark, specifically tailored to evaluate registration methods for scenarios involving large rotations. UMERegRobust achieves better than state-of-the-art performance on the KITTI benchmark, especially when strict precision of (1◦, 10 cm) is considered (with an average gain of +9%), and notably outperform SOTA methods on the RotKITTI benchmark (with +45% gain compared the most recent SOTA method). Our code is available at https://github.com/yuvalH9/UMERegRobust.
KW - Equivariant Representations
KW - Invariant Representations
KW - Point clouds
KW - Registration
KW - Rigid transformation estimation
UR - https://www.scopus.com/pages/publications/105018182384
U2 - 10.1007/978-3-031-73016-0_21
DO - 10.1007/978-3-031-73016-0_21
M3 - Conference contribution
AN - SCOPUS:105018182384
SN - 9783031730153
T3 - Lecture Notes in Computer Science
SP - 358
EP - 374
BT - Computer Vision – ECCV 2024 - 18th European Conference, Proceedings
A2 - Leonardis, Aleš
A2 - Ricci, Elisa
A2 - Roth, Stefan
A2 - Russakovsky, Olga
A2 - Sattler, Torsten
A2 - Varol, Gül
PB - Springer Science and Business Media Deutschland GmbH
T2 - 18th European Conference on Computer Vision, ECCV 2024
Y2 - 29 September 2024 through 4 October 2024
ER -