TY - JOUR
T1 - UNCOVERing the extended strong lensing structures of Abell 2744 with the deepest JWST imaging
AU - Furtak, Lukas J.
AU - Zitrin, Adi
AU - Weaver, John R.
AU - Atek, Hakim
AU - Bezanson, Rachel
AU - Labbé, Ivo
AU - Whitaker, Katherine E.
AU - Leja, Joel
AU - Price, Sedona H.
AU - Brammer, Gabriel B.
AU - Wang, Bingjie
AU - Marchesini, Danilo
AU - Pan, Richard
AU - Dayal, Pratika
AU - Van Dokkum, Pieter
AU - Feldmann, Robert
AU - Fujimoto, Seiji
AU - Franx, Marijn
AU - Khullar, Gourav
AU - Nelson, Erica J.
AU - Mowla, Lamiya A.
N1 - Publisher Copyright:
© 2023 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society.
PY - 2023/8/1
Y1 - 2023/8/1
N2 - We present a new parametric lens model for the massive galaxy cluster Abell 2744 based on new ultra-deep JWST imaging taken in the framework of the UNCOVER program. These observations constitute the deepest JWST images of a lensing cluster to date, adding to existing deep Hubble Space Telescope (HST) images and the recent JWST Early Release Science and Director's Discretionary Time data taken for this field. The wide field of view of UNCOVER (∼45 arcmin2) extends beyond the cluster's well-studied central core and reveals a spectacular wealth of prominent lensed features around two massive cluster sub-structures in the north and north-west, where no multiple images were previously known. We identify 75 new multiple images and candidates of 17 sources, 43 of which allow us, for the first time, to constrain the lensing properties and total mass distribution around these extended cluster structures using strong lensing (SL). Our model yields an effective Einstein radius of θE, main = 23.2 ± 2.3 arcsec for the main cluster core (for zs = 2), enclosing a mass of M(< θE, main) = (7.7 ± 1.1) × 1013 M⊙, and θE, NW = 13.1 ± 1.3 arcsec for the newly discovered north-western SL structure enclosing M(< θE, NW) = (2.2 ± 0.3) × 1013 M⊙. The northern clump is somewhat less massive with θE, N = 7.4 ± 0.7 arcsec enclosing M(< θE, N) = (0.8 ± 0.1) × 1013 M⊙. We find the northern sub-structures of Abell 2744 to broadly agree with the findings from weak lensing analyses and align with the filamentary structure found by these previous studies. Our model in particular reveals a large area of high magnification values between the various cluster structures, which will be paramount for lensed galaxy studies in the UNCOVER field. The model is made publicly available to accompany the first UNCOVER data release.
AB - We present a new parametric lens model for the massive galaxy cluster Abell 2744 based on new ultra-deep JWST imaging taken in the framework of the UNCOVER program. These observations constitute the deepest JWST images of a lensing cluster to date, adding to existing deep Hubble Space Telescope (HST) images and the recent JWST Early Release Science and Director's Discretionary Time data taken for this field. The wide field of view of UNCOVER (∼45 arcmin2) extends beyond the cluster's well-studied central core and reveals a spectacular wealth of prominent lensed features around two massive cluster sub-structures in the north and north-west, where no multiple images were previously known. We identify 75 new multiple images and candidates of 17 sources, 43 of which allow us, for the first time, to constrain the lensing properties and total mass distribution around these extended cluster structures using strong lensing (SL). Our model yields an effective Einstein radius of θE, main = 23.2 ± 2.3 arcsec for the main cluster core (for zs = 2), enclosing a mass of M(< θE, main) = (7.7 ± 1.1) × 1013 M⊙, and θE, NW = 13.1 ± 1.3 arcsec for the newly discovered north-western SL structure enclosing M(< θE, NW) = (2.2 ± 0.3) × 1013 M⊙. The northern clump is somewhat less massive with θE, N = 7.4 ± 0.7 arcsec enclosing M(< θE, N) = (0.8 ± 0.1) × 1013 M⊙. We find the northern sub-structures of Abell 2744 to broadly agree with the findings from weak lensing analyses and align with the filamentary structure found by these previous studies. Our model in particular reveals a large area of high magnification values between the various cluster structures, which will be paramount for lensed galaxy studies in the UNCOVER field. The model is made publicly available to accompany the first UNCOVER data release.
KW - dark matter
KW - galaxies: clusters: individual: Abell 2744
KW - galaxies: haloes
KW - gravitational lensing: strong
KW - large-scale structure of Universe
UR - http://www.scopus.com/inward/record.url?scp=85163923828&partnerID=8YFLogxK
U2 - 10.1093/mnras/stad1627
DO - 10.1093/mnras/stad1627
M3 - Article
AN - SCOPUS:85163923828
SN - 0035-8711
VL - 523
SP - 4568
EP - 4582
JO - Monthly Notices of the Royal Astronomical Society
JF - Monthly Notices of the Royal Astronomical Society
IS - 3
ER -