Universal alignment in turbulent pair dispersion

Ron Shnapp, Stefano Brizzolara, Marius M. Neamtu-Halic, Alessandro Gambino, Markus Holzner

Research output: Contribution to journalArticlepeer-review

3 Scopus citations

Abstract

Countless processes in nature and industry, from rain droplet nucleation to plankton interaction in the ocean, are intimately related to turbulent fluctuations of local concentrations of advected matter. These fluctuations can be described by considering the change of the separation between particle pairs, known as pair dispersion, which is believed to obey a cubic in time growth according to Richardson’s theory. Our work reveals a universal, scale-invariant alignment between the relative velocity and position vectors of dispersing particles at a mean angle that we show to be a universal constant of turbulence. We connect the value of this mean angle to Richardson’s traditional theory and find agreement with data from a numerical simulation and a laboratory experiment. While the Richardson’s cubic regime has been observed for small initial particle separations only, the constancy of the mean angle manifests throughout the entire inertial range of turbulence. Thus, our work reveals the universal nature of turbulent pair dispersion through a geometrical paradigm whose validity goes beyond the classical theory, and provides a framework for understanding and modeling transport and mixing processes.

Original languageEnglish
Article number4195
JournalNature Communications
Volume14
Issue number1
DOIs
StatePublished - 1 Dec 2023

ASJC Scopus subject areas

  • General Chemistry
  • General Biochemistry, Genetics and Molecular Biology
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Universal alignment in turbulent pair dispersion'. Together they form a unique fingerprint.

Cite this