Utilization of DNA and 2D metal oxide interaction for an optical biosensor

Partha Kumbhakar, Indrani Das Jana, Subhadip Basu, Sandip Mandal, Saptarshi Banerjee, Subhanita Roy, Chinmayee Chowde Gowda, Anyesha Chakraborty, Ashim Pramanik, Pooja Lahiri, Basudev Lahiri, Amreesh Chandra, Pathik Kumbhakar, Arindam Mondal, Prabal K. Maiti, Chandra Sekhar Tiwary

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

The efficient monitoring and early detection of viruses may provide essential information about diseases. In this work, we have highlighted the interaction between DNA and a two-dimensional (2D) metal oxide for developing biosensors for further detection of viral infections. Spectroscopic measurements have been used to probe the efficient interactions between single-stranded DNA (ssDNA) and the 2D metal oxide and make them ideal candidates for detecting viral infections. We have also used fully atomistic molecular dynamics (MD) simulation to give a microscopic understanding of the experimentally observed ssDNA-metal oxide interaction. The adsorption of ssDNA on the inorganic surface was found to be driven by favourable enthalpy change, and 5′-guanine was identified as the interacting nucleotide base. Additionally, the in silico assessment of the conformational changes of the ssDNA chain during the adsorption process was also performed in a quantitative manner. Finally, we comment on the practical implications of these developments for sensing that could help design advanced systems for preventing virus-related pandemics.

Original languageEnglish
Pages (from-to)17143-17153
Number of pages11
JournalPhysical Chemistry Chemical Physics
Volume25
Issue number26
DOIs
StatePublished - 26 May 2023
Externally publishedYes

ASJC Scopus subject areas

  • General Physics and Astronomy
  • Physical and Theoretical Chemistry

Fingerprint

Dive into the research topics of 'Utilization of DNA and 2D metal oxide interaction for an optical biosensor'. Together they form a unique fingerprint.

Cite this