Abstract
The temperature dependences of fluorescence and phosphorescence spectra maxima of chromophor labels--endogenic (tryptophan) and exogenic (eosinisothiocyanate)--were measured for the preparations of photosynthetic membranes and reaction centers from Rhodospirillum rubrum. It was found that the dipole mobility of protein-lipid matrix in the vicinity of the chromophores intensified markedly with a temperature rise from 150 to 300K resulting in the corresponding relaxation time tau r decrease from 10(0) to 10(-8) s. The efficiency of direct transfer of the photomobilized electron in the system of quinone acceptors (A1- leads to A2) of reaction centers (characteristic half-times of the process being 10(-3) divided by 10(-4) s) was shown also to increase sharply at temperatures higher than 200K parallel to the enhancement of molecular motions with tau r approximately 10(-8) s. Meanwhile, changes observed in the rate of recombination of primary photoproducts, i.e. an oxidized bacteriochlorophyll dimer, P+ and a reduced acceptor, A1- (characteristic half-time of 10(-1) divided by 10(-2) s) and the activization of low-frequency motions with tau r approximately 10(-3) s in the external layers and tau r less than 1 s in the internal parts of the reaction centers protein develop over the same range of low temperatures (150-220 K). The nature of interactions which determine the dependence of the photosynthetic electron transport on the molecular mobility of the membrane proteins is discussed.
Translated title of the contribution | Intramolecular dynamics and electron transfer in photosynthetic reaction centers. A study using luminescence |
---|---|
Original language | Russian |
Pages (from-to) | 846-854 |
Number of pages | 9 |
Journal | Molekulyarnaya Biologiya |
Volume | 17 |
Issue number | 4 |
State | Published - 1 Jul 1983 |
ASJC Scopus subject areas
- General Medicine