Water quality implications of the neutralization of acid mine drainage with coal fly ash from India and the United States

Rachel Weinberg, Rachel Coyte, Zhen Wang, Debabrata Das, Avner Vengosh

Research output: Contribution to journalArticlepeer-review

9 Scopus citations


Subsurface coal mining often induces the formation of acid mine drainage (AMD) in active and abandoned coal mines while coal combustion generates coal combustion residuals (CCR), including fly ash (FA), with elevated levels of toxic metals. Decades of AMD and CCR production have caused major environmental and human health impacts. Given the typically elevated level of oxides in FA, previous studies have examined its potential to neutralize AMD and remove the associated metals. While the neutralization of AMD through reaction with FA has been demonstrated to successfully remove cationic metals, the fate of oxyanion forming elements are less well studied and is the focus of this study. Here we conducted 49 different experiments in which simulated AMD solutions were interacted with representative U.S. (n = 7) and Indian (n = 6) FA samples through controlled liquid to solid ratios in short-term (24 h) and long-term (up to 5 weeks) lab-scale experiments. We show that Class-F FA, originating from Gondwana and Northeastern Tertiary coals in India, has limited neutralization capacity, while Class-C FA, with high CaO and MgO contents from Powder River coals in the U.S. has the greatest AMD neutralization capacity among the studied fly ashes. The neutralization experiments show that AMD-FA reactions cause the removal of cationic elements (i.e., Fe, Mn, and Al) from solution, while at the same time, leaching oxyanion forming elements (i.e., As, Se, Mo, Cr, B, Tl, and Sb) from the FA, increasing the potential environmental risks from the treated leachates. The magnitude of mobilization of these elements depends on their concentrations in the FA and the pH conditions. We show that using FA from the Appalachian and Illinois coals efficiently neutralizes AMD, but also results in secondary contamination of the treated effluents with oxyanion forming elements to levels exceeding drinking water and ecological standards, which could contaminate the ambient environment, whereas neuralization with Powder River Basin Class-C FA induces only limited contamination.

Original languageEnglish
Article number125675
StatePublished - 15 Dec 2022
Externally publishedYes


  • Acid mine drainage
  • Coal ash
  • Environmental management
  • Metalloids
  • Metals
  • Neutralization

ASJC Scopus subject areas

  • General Chemical Engineering
  • Fuel Technology
  • Energy Engineering and Power Technology
  • Organic Chemistry


Dive into the research topics of 'Water quality implications of the neutralization of acid mine drainage with coal fly ash from India and the United States'. Together they form a unique fingerprint.

Cite this