Wavelength Tuning of GaAs LED's Through Surface Effects

N. S. Kopeika, Herzl Aharoni, Israel Hirsh, Shlomo Hava, Israel Lupo

Research output: Contribution to journalArticlepeer-review

15 Scopus citations

Abstract

A. novel wavelength tuning technique, applicable to shallow junction surface-emitting LED's, is shown to exhibit wavelength changes on the order of 50 nm, depending on current and gas environment. The tuning technique is external and is continuous, repeatable, reversible, controllable, and apparently nondestructive. Thermal and pressure changes in Eg do not appear to be dominant mechanisms. The dominant mechanism is suspected to involve surface effects, such as desorption of adsorbed gases, which depend upon self-heating in vacuo. The one-to-one relationship between diode voltage and peak emission wavelength suggests photon-assisted tunneling as the tuning mechanism, although surface band-bending changes may play some role. Surface effects alone, such as generated by UV illumination, are shown to yield noticeable LED wavelength shift, while bulk heating with red light of much higher average irradiance does not. This technique is, in principle a general technique independent of semiconductor material. The results described here should also have implications for optical-fiber communication, gas detection and identification, and space applications.

Original languageEnglish
Pages (from-to)334-347
Number of pages14
JournalIEEE Transactions on Electron Devices
Volume30
Issue number4
DOIs
StatePublished - 1 Jan 1983

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Wavelength Tuning of GaAs LED's Through Surface Effects'. Together they form a unique fingerprint.

Cite this