TY - UNPB
T1 - Wavelet Feature Maps Compression for Image-to-Image CNNs.
AU - Finder, Shahaf E.
AU - Zohav, Yair
AU - Ashkenazi, Maor
AU - Treister, Eran
N1 - DBLP License: DBLP's bibliographic metadata records provided through http://dblp.org/ are distributed under a Creative Commons CC0 1.0 Universal Public Domain Dedication. Although the bibliographic metadata records are provided consistent with CC0 1.0 Dedication, the content described by the metadata records is not. Content may be subject to copyright, rights of privacy, rights of publicity and other restrictions.
PY - 2022/10/16
Y1 - 2022/10/16
N2 - Convolutional Neural Networks (CNNs) are known for requiring extensive computational resources, and quantization is among the best and most common methods for compressing them. While aggressive quantization (i.e., less than 4-bits) performs well for classification, it may cause severe performance degradation in image-to-image tasks such as semantic segmentation and depth estimation. In this paper, we propose Wavelet Compressed Convolution (WCC) -- a novel approach for high-resolution activation maps compression integrated with point-wise convolutions, which are the main computational cost of modern architectures. To this end, we use an efficient and hardware-friendly Haar-wavelet transform, known for its effectiveness in image compression, and define the convolution on the compressed activation map. We experiment on various tasks, that benefit from high-resolution input, and by combining WCC with light quantization, we achieve compression rates equivalent to 1-4bit activation quantization with relatively small and much more graceful degradation in performance.
AB - Convolutional Neural Networks (CNNs) are known for requiring extensive computational resources, and quantization is among the best and most common methods for compressing them. While aggressive quantization (i.e., less than 4-bits) performs well for classification, it may cause severe performance degradation in image-to-image tasks such as semantic segmentation and depth estimation. In this paper, we propose Wavelet Compressed Convolution (WCC) -- a novel approach for high-resolution activation maps compression integrated with point-wise convolutions, which are the main computational cost of modern architectures. To this end, we use an efficient and hardware-friendly Haar-wavelet transform, known for its effectiveness in image compression, and define the convolution on the compressed activation map. We experiment on various tasks, that benefit from high-resolution input, and by combining WCC with light quantization, we achieve compression rates equivalent to 1-4bit activation quantization with relatively small and much more graceful degradation in performance.
U2 - 10.48550/arXiv.2205.12268
DO - 10.48550/arXiv.2205.12268
M3 - Preprint
BT - Wavelet Feature Maps Compression for Image-to-Image CNNs.
ER -