Weak measurements in nano-optics

Niladri Modak, Ankit K. Singh, Shyamal Guchhait, B. S. Athira, Mandira Pal, Nirmalya Ghosh

Research output: Contribution to journalReview articlepeer-review

2 Scopus citations


Background: Weak measurement involves weak coupling between the system and the measuring device (pointer) enables large amplification and high precision measurement of small physical parameters. The outcome of this special measurement procedure involving nearly mutually orthogonal pre-and post-selection of states in such weakly interacting systems leads to weak value that can become exceedingly large and lie outside the eigenvalue spectrum of the measured observable. This unprecedented ability of weak value amplification of small physical parameters has been successfully exploited for various metrological applications in the optical domain and beyond. Even though it is a quantum mechanical concept, it can be understood using the classical electromagnetic theory of light and thus can be realized in classical optics. Objective: Here, we briefly review the basic concepts of weak measurement and weak value amplification, provide illustrative examples of its implementation in various optical domains. The applications involve measuring ultra-sensitive beam deflections, high precision measurements of angular rotation, phase shift, temporal shift, frequency shift and so forth, and expand this extraordinary concept in the domain of nano-optics and plasmonics. Methods: In order to perform weak value amplification, we have used Gaussian beam and spectral response as the pointer subsequently. The polarization state associated with the pointer is used as pre and post-selection device. Results: We reveal the weak value amplification of sub-wavelength optical effects namely the Goos-Hänchen shift and the spin hall shift. Further, we demonstrate weak measurements using spectral line shape of resonance as a natural pointer, enabling weak value amplification beyond the conventional limit, demonstrating natural weak value amplification in plasmonic Fano resonances and so forth. The discussed concepts could have useful implications in various nano-optical systems to amplify tiny signals or effects. Conclusion: The emerging prospects of weak value amplification towards the development of novel optical weak measurement devices for metrological applications are extensively discussed.

Original languageEnglish
Pages (from-to)191-213
Number of pages23
JournalCurrent Nanomaterials
Issue number3
StatePublished - 1 Jan 2020


  • Beam shifts
  • Fano resonance
  • Nano optics
  • Plasmonics
  • Weak measurement
  • Weak value

ASJC Scopus subject areas

  • Biomaterials
  • Ceramics and Composites
  • Materials Science (miscellaneous)


Dive into the research topics of 'Weak measurements in nano-optics'. Together they form a unique fingerprint.

Cite this