When consensus meets self-stabilization

Shlomi Dolev, Ronen I. Kat, Elad M. Schiller

Research output: Contribution to journalArticlepeer-review

20 Scopus citations


This paper presents a shared-memory self-stabilizing failure detector, asynchronous consensus and replicated state-machine algorithm suite, the components of which can be started in an arbitrary state and converge to act as a virtual state-machine. Self-stabilizing algorithms can cope with transient faults. Transient faults can alter the system state to an arbitrary state and hence, cause a temporary violation of the safety property of the consensus. Started in an arbitrary state, the long lived, memory bounded and selfstabilizing failure detector, asynchronous consensus, and replicated state-machine suite, presented in the paper, recovers to satisfy eventual safety and eventual liveness requirements. Several new techniques and paradigms are introduced. The bounded memory failure detector abstracts away synchronization assumptions using bounded heartbeat counters combined with a balance-unbalance mechanism. The practically infinite paradigm is introduced in the scope of self-stabilization, where an execution of, say, 264 sequential steps is regarded as (practically) infinite. Finally, we present the first self-stabilizing wait-free reset mechanism that ensures eventual safety and can be used to implement efficient self-stabilizing timestamps that are of independent interest.

Original languageEnglish
Pages (from-to)884-900
Number of pages17
JournalJournal of Computer and System Sciences
Issue number8
StatePublished - 1 Jan 2010


  • Consensus
  • Distributed reset
  • Failure detector
  • Self-stabilization
  • State-machine
  • Wait-free

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Computer Networks and Communications
  • Computational Theory and Mathematics
  • Applied Mathematics


Dive into the research topics of 'When consensus meets self-stabilization'. Together they form a unique fingerprint.

Cite this