Abstract
Lithium-selenium (Li-Se) batteries have attracted widely attention due to their high volume specific capacity (3260 mAh cm−3) and good electronic conductivity (1 × 10−3 S m−1) of selenium. However, the rapid capacity fading, high volume changes and shuttle effect of lithium polyselenides (LiPSes) limit its further application. Herein, a zinc-cobalt bimetallic catalysts on nitrogen-doped 3D ordered porous carbon (ZnCo-NC) has been constructed and applied as cathode for Li-Se batteries. Such a material could provide unique structure for the adsorption and catalytic conversion of the LiPSes during charge/discharge. As expected, the ZnCo-NC/Se cathode exhibits a high discharge capacity of 549 mAh g−1 after 100 cycles at 0.2 C and 396 mAh g−1 after 1000 cycles at 2 C with a Coulombic efficiency of ∼100%, significantly better than the single-metal counterparts of Co-NC/Se and Zn-NC/Se.
Original language | English |
---|---|
Article number | 168944 |
Journal | Journal of Alloys and Compounds |
Volume | 942 |
DOIs | |
State | Published - 5 May 2023 |
Externally published | Yes |
Keywords
- Lithium-selenium batteries
- Porous carbon
- Shuttle effect
- Zinc-cobalt bimetallic catalyst
ASJC Scopus subject areas
- Mechanics of Materials
- Mechanical Engineering
- Metals and Alloys
- Materials Chemistry