Zinc oxide nanoparticles phytotoxicity on halophyte from genus Salicornia

Ľudmila Balážová, Petr Babula, Matej Baláž, Miriam Bačkorová, Zdenka Bujňáková, Jaroslav Briančin, Assylay Kurmanbayeva, Moshe Sagi

Research output: Contribution to journalArticlepeer-review

29 Scopus citations


This study deals with the effect of zinc oxide nanoparticles (ZnO NPs) on halophyte from the genus Salicornia. The presence of ZnO nanoparticles (100 and 1000 mg/L) in the solid culture medium resulted in the negative effects on plant growth in the concentration-dependent manner. The shoot length of plant cultivated with 1000 mg/L ZnO NPs decreased by more than 50% compared to non-treated plants. The phytotoxicity was associated with the release of free zinc(II) ions, which was determined by atomic absorption spectroscopy and fluorescence microscopy. Another mechanism involved in ZnO NPs phytotoxicity was closely connected with generation of reactive oxygen species (ROS), which was accompanied by changes in activities and amounts of antioxidant enzymes. Histochemical evaluation showed that ROS were present also in the shoot of plant, which was not in direct contact with NPs. The reduction of activity and amount of antioxidant enzymes such as gamma–ESC, GR, SOD, PER, APX and higher concentration of ROS lead to lipid peroxidation, the latter being almost 3 times higher for the plant treated with 1000 mg/L NPs compared to control. The misbalance in zinc homeostasis and creation of ROS with subsequent oxidative stress led to the initiation of processes of programmed cell death, which was demonstrated by the loss of mitochondrial potential and increase of intracellular calcium (II) ions. Despite halophytes exhibit higher stress resistance than glycophytes, they are prone to negative changes if incubated in the environment containing ZnO nanoparticles.

Original languageEnglish
Pages (from-to)30-42
Number of pages13
JournalPlant Physiology and Biochemistry
StatePublished - 1 Sep 2018


  • Halophyte
  • Oxidative stress
  • Phytotoxicity
  • Salicornia
  • ZnO nanoparticles

ASJC Scopus subject areas

  • Physiology
  • Genetics
  • Plant Science


Dive into the research topics of 'Zinc oxide nanoparticles phytotoxicity on halophyte from genus Salicornia'. Together they form a unique fingerprint.

Cite this